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Abstract--Constant property, laminar flow heat transfer in a semi-circular tube with uniform wall tem- 
perature has been analyzed. The results define the lower bound of heat transfer augmentation in circular 
tubes with twisted-strip inserts. Two thermal boundary conditions, corresponding to two extremes of the 
fin effect of the inserts encountered in practical applications, are considered. Numerical solutions employing 
finite-difference formulations have been carried out. For a hydrodynamically fully developed flow, the 
friction factor of (15.823/Re)4 agrees with the analytical solution reported in the literature. Results for 
thermally developing flow heat transfer are presented graphically, and equations (28) and (29) describe the 
solutions for Nu, as a function of Gz for the two boundary conditions. The asymptotic Nusselt numbers 

for the two cases are 5.626 and 4.631. 

INTRODUCTION 

TWISTED-STRIP inserts are a particularly effective tech- 
nique for enhancing laminar flow heat transfer in cir- 
cular tubes [l]. The swirl flow effects diminish as the 

severity of the twist is decreased. In the limit, the strip 
is straight and the tube is divided into two circular 
segment ducts. When the strip is thin, the situation 
is essentially that of flow in a semi-circular duct. A 
solution for the heat transfer in laminar flow in a semi- 
circular tube would, therefore, provide the necessary 
limiting base-line reference for the more general 
enhancement problem with twisted-strip inserts in cir- 
cular tubes. 

Shah and London [2] have extensively surveyed 
laminar flows in ducts of different geometries. Lami- 
nar flow with heat transfer in ducts of circular segment 
and semi-circular cross-sections was first analyzed by 
Eckert et al. [3] and Sparrow and Haji-Sheikh [4]. 
They presented isothermal friction factors and Nus- 
selt numbers for fully developed flows with the uni- 
form heat flux boundary condition. Hong and Bergles 
[5] considered the hydrodynamically developed, but 
thermally developing, laminar flow problem in a semi- 
circular tube. Their numerical solutions for the ther- 
mal entrance region treat two variations of the uni- 
form axial heat rate boundary condition: uniform 
peripheral wall temperature at each axial location, 
and uniform wall temperature around the semi-cir- 
cular arc but zero heat flux along the straight section. 
These solutions simulate an electrically heated tube 
with large peripheral thermal conductors where the 
strip insert is, respectively, a good conductor and in 
excellent contact with the wall or a poor conductor in 
poor contact with the wall. 

For process industry applications, it is more usual 
to encounter the uniform wall temperature boundary 
condition commonly produced by steam heating. For 

this case, however, there does not appear to be a heat 
transfer solution described in the literature. It is the 
intent in this paper to analyze this problem and pre- 
sent numerical solutions for both the thermal entrance 
region and fully developed flow. The analysis accounts 
for two boundary conditions, namely, uniform wall 
temperature peripherally and axially, and uniform 
wall temperature peripherally and axially over the 
circular section but with the straight section adiabatic. 
These two conditions essentially form the lower 
extremes of the fin effect of a twisted-strip insert. The 
former signifies that the twisted strip is a perfect heat 
conductor and is in perfect thermal contact with the 
tube, while the latter condition considers the strip to 
be insulated from the wall, or a heat nonconductor. 
In actual practice, a loose-fitting metallic strip of rela- 
tively low thermal conductivity is usually employed, 
which corresponds to a situation in between these two 
boundary conditions. 

PROBLEM FORMULATION 

Thermal entrance region 
The basic analysis involves the cylindrical coor- 

dinate system (R, 0, Z), shown in Fig. 1 (a). The steady, 
incompressible, laminar flow is considered to be 
hydrodynamically fully developed but thermally 
developing. From boundary layer theory, this idea- 
lization appears to be valid for most liquids with high 
Prandtl numbers (Pr >> 1) where the hydrodynamic 
entry length is relatively very small [i;]. Additionally, 
the problem formulation is constrained by the fol- 
lowing simplifications : 

(1) Newtonian fluid, constant property flow ; 
(2) constant axial pressure gradient ; 
(3) negligible axial heat conduction ; 
(4) negligible viscous dissipation. 
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NOMENCLATURE 

a inner radius of semi-circular tube r dimensionless radial coordinate, R/a 
C dimensionless pressure drop parameter, T temperature 

(a’/@) (aP/az) Tl?l bulk fluid temperature C 
, a constant, 2(a + 2)/n for Case 1, and 2 for T, fluid temperature at duct inlet 

Case 2 UHF uniform heat flux 

C, specific heat UWT uniform wall temperature 
Dh hydraulic diameter, equation (6) W axial velocity 

f Fanning friction factor IV average axial velocity, equation (21) 
G a function, (~4 Nu C,)/2 W dimensionless axial velocity, W/w 
Gz Graetz number, tiC,lkL Z axial component of cylindrical 

9 dimensionless parameter, w/C coordinate system 
h heat transfer coefficient, equation (9) Z dimensionless axial coordinate, 
i radial grid point Z/a(Re, Pr). 

j circumferential grid point 
k thermal conductivity ; axial grid point Greek symbols 
L axial length of duct 0 circumferential component of 
M radial mesh size cylindrical coordinate system 
ti mass flow rate !J fluid viscosity 
N circumferential mesh size ; normal P fluid density 

coordinate rV/ shear stress at duct wall, equations (3) 
n dimensionless normal coordinate, N/a and (4) 
Nu Nusselt number, 2ah/k 4 dimensionless temperature, 
Nu, axially mean Nusselt number, equation 0-w- T)/(T,- T) 

(14) & dimensionless bulk temperature, 
P pressure 0-w-- TJ(Tw- r,). 
Pe Peclet number, Re Pr 
Pr Prandtl number, pC,lk Subscripts 
,, qw local peripherally averaged wall heat flux i at a radial node point 

R radial component of cylindrical coordinate i,j at a grid point in duct cross-section 
system i,_i, k at a grid point in flow field 

Re Reynolds number, p mD/p j at a circumferential node point 
Re, Reynolds number based on radius, p @a/p k at an axial grid point 
ReDh Reynolds number based on hydraulic m mean 

diameter, p pDh/p W at duct wall. 

The consideration of these assumptions does not Case 1 : uniform axial and circumferential tube wall 
necessarily imply an oversimplification of the 
problem. Singh [7] established that axial heat con- 
duction effects are negligible in flows with Peclet num- 
ber (Re Pr) greater than 100. Collins [8] observed that 
viscous dissipation effects are negligible and need not 
be included in most laminar flow analyses. The only 
major idealization, therefore, is the assumption of 
constant properties. In real situations, as pointed out 
in refs. [9, lo], experimental heat transfer data exhibit 
substantial deviations from constant property ana- 
lytical predictions. This is attributable to the tem- 
perature dependence of transport and thermophysical 
properties of fluids. Nevertheless, as stipulated earlier, 
the chief objective here is to arrive at a limiting 
solution, and to this end a constant property analysis 
is a good approximation. Furthermore, as noted 
earlier, the thermal analysis is constrained by either 
of the two boundary conditions given below. 

temperature. 
Case 2 : adiabatic straight section but constant axial 
and circular arc section tube wall temperature. 

These two conditions are schematically illustrated in 
Fig. l(b). 

In order to render the requisite governing equations 
dimensionless, the following parameters are defined : 

Re.=$, Pr=%, r=t, r w=- 

Z T,-T 
z=------ 4=_ 

aRe, Pr’ T,-T,’ 
C=$!!?. 

pwaz 

With the introduction of these parameters and the 
assumptions in the problem statement, the governing 
differential equations can be expressed in dimen- 
sionless form as [l l] : 
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(a) 

CASE 1 CASE 2 

f‘\, cl *w aT=(J 
ae 

b) 

FIG. 1. Flow field configurations : (a) coordinate system with velocity profile; (b) thermal boundary 
conditions. 

momentum equation 
r, = -&)($). (3) 

(1) 
However, by definition of the friction factor 

energy equation 
Tw =f :pmt’ (4) 

(2) and a hydraulic diameter based Reynolds number is 
given by 

The boundary conditions for these equations, in 
terms of dimensionless parameters, are : ReDh = %w (5) 

for the momentum equation 
where 

w(l,0) = 0 

w(r,@=O at @=Oandrr; (6) 

for the energy equation 

$J(r,tZO) = 1 

&1,&z) = 0, 0 < e < 7I 

Casel:$(r,0,z)=O at e=Oandn 

Therefore, by combining equations (3)-(6) and intro- 
ducing the dimensionless pressure drop constant, C, 
the friction factor is given by 

(7) 

Case2:(d4/dB)=O at 8=0andn;O<r<l. 

The solution of these equations yields the velocity and 
Equations (1) and (7) can be readily solved for w 

temperature fields which, in turn, provide the friction 
and (f Re) by a numerical iterative procedure. 

factor and Nusselt number. Nusselt number 

Friction factor 
The heat transfer result of primary thermal design 

To evaluate the friction factor, a stationary control 
importance is the coefficient of heat transfer. The 

volume in the flow field is considered from which 
usual expression for the Nusselt number is 

the following expression for the wall shear stress is 
obtained (8) 
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The peripherally averaged, but axially local, heat 
transfer coefficient, h, is generally defined by 

4; = h(TW-z-T,). (9) 

Introducing a dimensionless mixed-mean fluid tem- 
perature 

Tw-Tm q5m=-- 
Tw-T, 

and the non-dimensional equation for the heat flux at 
the duct wall 

into equation (9) and combi~ng it with equation (8) 
yields 

(1-a 

where (~~Ja~)~ represents a peripheral average tem- 
perature gradient at the duct wall. The dimensionless 
mixed-mean temperature, given the local velocity and 
temperature fields, is evaluated from 

w& d@ dr. (13) 

The Nusselt number given by equation (12) is the 
axially local, but peripherally mean value. In process 
heat exchanger design and rating a mean axial Nusselt 
number, rather than a local one, has greater functional 
applicability. This is represented by a mean heat trans- 
fer coefficient averaged over the tube length 

(14) 

Thus, with the solution of the energy equation (2), 
(Pm, iVu, and Nu, can bc nume~cally evaluated from 
equations (13), (12), and (14), respectiveIy. This arith- 
metic can be conveniently repeated for the two ther- 
mal boundary conditions to complete the heat transfer 
solution for laminar, constant property flow in a semi- 
circular tube. 

The attainment of fully developed velocity and tem- 
perature profiles is usually considered to be fully 
developed flow. For a given heating rate, it is reason- 
able to assume that at axial locations far removed 
from the duct entrance, the temperature profile will 
be fully established and will not exhibit any variation 
[6]. The fact that the temperature profile is invariant 
with axial distance 2 can be stated mathematically in 
its dimensionless form as 

(1.9 

Next, from an energy balance over an elemental 
duct segment of length dZ, it can be shown that 

where C, is evaluated according to Case 1 and Case 
2 thermal boundary conditions as follows : 

C, = 2(x+2)/x for Case 1 

c, -2 for Case 2. 

Hence, with the substitution of equations (15) and 
(16), the energy equation (2) can be transformed for 
the fully developed flow condition to 

The thermal boundary constraints are the same as 
stated earlier for equation (2). 

FINITE-DIFFERENCE FORMULATION 

Numerical solutions for laminar flows with heat 
transfer in ducts of various cross-section geometries 
have been widely reported in the literature. The 
numerical analysis strategies adopted here are essen- 
tially based on the r~ommendations of Hombeck 
[ 121. For the flow field configuration described by the 
coordinate system of Fig. l(a), the finite-difference 
grid used is shown in Fig. 2. The mesh is equally 
spaced in the radial (r) and circumferential (6) direc- 
tions, but not in the axial (z) direction. The axial node 
points are denoted by k, and the grid points in the r- 
and &directions by i and j, respectively. 

Fully developed velocity solution 
The momentum equation as described by equation 

(1) has two unknowns : the axial velocity, W, and the 
pressure drop constant, C. However, with the sub- 
stitution of the parameter g defined as 

g = Y 
c (18) 

equation (1) reduces to 

The corresponding no-slip boundary conditions in 
terms of g can be stated as 

g(l, 0) = 0 

g(r, 0) = 0 at 0 = 0 and n. 

The finite-difference representation for the grid as 
shown in Fig. 2, can be expressed as 
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FIG. 2. Finite-difference grid configuration. 

_!7+ I,i-Si,j _-I,_ ,,2 .gi,j-gi- 1.j 
ri+ 112 Ar I Ar 1 

l 
+I, 

-29i,j+gi,j- 1 

W)” 1 = ri. (20) 

This is an explicit representation with the only un- 
known at the (i, j) node point, and its solution can 
be effected through a simple relaxation technique [ 111. 
To calculate the pressure drop constant, C, the usual 
definition of the average velocity, p, given by 

WdA, = $ WRdC?dR (21) 

is introduced in equation (18) to obtain 

(22) 

This can be numerically integrated by employing the 
trapezoidal rule. Finally, knowing g and C, the axial 
velocity distribution is determined from equation (18). 

Thermal entrance region 
Using an implicit scheme, the finite-difference rep- 

resentation of a rephrased form of the energy equation 
(2) [I l] is 

+ (r,ArAfI)2wi,j+2(riAB)2Az+2(Ar)ZAz 4i,j,r 1 

= (riArA@2~i,j&,j,k- , 

+  AzW2 4i,j+ 1.k + 4i,j- l,k 1 (23) 

With the imposition of the given boundary conditions, 
the matrix of the coefficients of the set of linear 
algebraic equations that are generated is tridiagonal 
and can be solved by the Thomas algorithm [ 131. The 
temperature field is solved separately for both Case 1 
and Case 2 boundary conditions. The details of the 
finite-difference formulations corresponding to the 
application of the boundary constraints along with 
the consequent series of algebraic equations are given 
in ref. [ 111. 

Once the local temperature distribution is estab- 
lished, the bulk temperature, 8,, is directly obtainable 
from equation (13) by a simple numerical integration 
employing the trapezoidal rule. Furthermore, the cir- 
cumferentially averaged temperature gradient at the 
wall at a given z location can be numerically deter- 
mined from 

34i,N-44i,N- I +4i,N- 2 

+ 34,. I+N/2 -442,l+N,2+43,l+‘v,2 

2Ar 

(24) 

Equation (24) is only applicable for the Case 1 boun- 
dary condition where the wall temperature is specified, 
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i.e. 0 = 0. For the Case 2 boundary condition, where 
the flat section is considered to be adiabatic, equation 
(24) reduces to 

Thus, the axially local Nusselt number can be deter- 
mined by evaluating equations (13) (24), (25), and 
(12) for the two boundary conditions. The mean Nus- 
selt number is obtainable by n~e~~a~~y integrating 
equation (14) using the trapezoidal rub, 

Fully developedjlow 
The fully developed flow solution provides the 

necessary asymptotic result for a complete analysis of 
the heat transfer problem. The separate sohttion of 
this condition is driven by the need to obtain an inde- 
pendent verification of and to establish an unequi- 
vocal result for the asymptotic Nusselt number in con- 
stant property, laminar flows in semi-circular tubes 
with UWT. 

The energy equation governing the fully developed 
flow is elliptic in nature and has two u~~owns : the 
dimensionless temperature, 8, and the Nusselt number 
(which is a function of 0). By introducing a parameter 
G, defined as 

G, = 2 w,##%,j Afl4 f2fi) 

equation (17) can be restated [ 111 to give the following 
finite-difference representation : 

fArIJ2($i,j.+ I +4r,j- 1) - (rjA0W2Gj.j. (27) 

Were again, a set of linear algebraic equati5ns will 
be obtained and the eoefhcient matrix is tridiagonal 
for both Case 1 and Case 2 boundary conditions. The 
solution for 0 and Nu can be obtained through a series 
of iterative steps involving equations (26), (27), (13) 
(2/t), (25), and (12) as described in detail in ref. [l I]. 

The numerical literature generally acknowledges 
that consistent and stable initial value problems are 
convergent. The finite-difference schemes adopted in 
this study, with truncation errors of the order of the 
square of the mesh size, are consistent and uni- 
versa& stable. However, as recently documented by 
Conley et al. [14], most numerical salutions to the 
Graetz problem deviate from the exact closed-form 
solutions in the immediate vicinity of the duct 
entrance. They have attributed this to what was 
observed by Collins fl5] as a general error of about 

1% that is commonly incurred in the numerical reso- 
lution of energy balances for explicitly imposed wall 
thermal conditions, This error is also found to be 
much greater near the entrance [lS], caused by gross 
numerical approximations of the sharp axial and 
radial gradients in this region. Shah and London [2] 
ascribe the deviations to the singularity at the duct 
mouth where the Nusselt number is infinity and rather 
coarse approximations for this condition. Not- 
wit~t~ding the reasons for the discrepancies, ConIey 
et al. [14] have shown through a rigorous comparative 
numerical analysis that the selection of optimaliy fine 
radial and axial grid sizes greatly reduces the inac- 
curacy. What little error that might persist, in spite of 
a fine grid very near the duct entrance, is not of grave 
significance in most practical applications f2]. 

For the grid selection in this study, trial runs for 
the momentum equation and an initial part of the 
thermal entry length solution were conducted. Based 
on these results, a 41 x 41 mesh was adopted for the 
thermai entrance region and a 21 x 21 grid for the 
fully developed energy equation. For the marching 
solution of the energy equation, the initial axial step 
was fixed through a reasonably extensive trial process 
to be 

AZ = 0.00015. 

Furthermore, to conserve computation time and 
avoid unnecessary refkement downstream in the flow 
field, a successively increasing axial mesh was chosen. 
The increase in the 8.r step was governed by the fol- 
lowing equation : 

Azi = Azi_ i x 1.22, i = 1,2,3, etc. 

The iterative convergence criterion was established to 
have a maximum error of less than 0.0001. The Gauss- 
Seidel method with SOR was employed for the vel- 
ocity solution. For the energy equations SOR by rows 
was used for Case 1 and under-relaxation for Case 2. 
Details of the solution procedures and the con- 
comitant computer codes are given in ref. [I l]. 

RESULTS AND DISCUSSION 

The fully de&aped axiaf velocity dist~bution at 
different circumferential (6) locations in the duct 
cross-section is given in Fig. 3. The velocity profile 
has approximately a parabolic shape, particularly at 
0 = 90”. At locations closer to the straight wall the 
profile -ends to flatten out. The present numerical 
solution agrees very well with the results of Hong and 
Bergks [16& as shown in Fig. 3. The friction factor as 
given by equation (7), after the numerical integration 
of equation (22), was evaluated as 

(f Re)& = 15.823. 

This is in excellent agreement with the analyticai solu- 
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- PRESENT STUDY 
0 0 0 HONG AND BERGLES [16] 

DIMENSIONLESS AXIAL VELOCITY, r 

FIG. 3. Fully developed axial velocity distribution. 

DIMENSIONLESS TEMPERATURE, O/O, 

FIG. 4. Fully developed dimensionless temperature profile for Case 1 thermal boundary condition. 

tion of Sparrow and Haji-Sheikh [4], who have 
reported Cf Re),, = 15.767. The slight deviation is 
probably due to the inherent approximations in a 
numerical solution. 

Fully developedJow heat transfer 
For a constant property, laminar flow in a semi- 

circular tube with the Case 1 boundary condition, the 
fully developed temperature profile is presented in 

Fig. 4. The profile is similar to the shape generally 
depicted for flows in circular tubes with UWT [2, 61, 
i.e. a nearly parabolic shape.. Figure 5 illustrates the 
temperature profile for the case of an insulated straight 
wall section in the semi-circular tube (Case 2). Zero 
temperature gradients, resulting from no heat transfer 
from the straight wall section, are evident from the 
somewhat flat profile at and near r = 0. 

The corresponding Nusselt numbers as obtained 
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5- 

DIMENSIONLESS TEMPERATURE, $&,,, 

FIG. 5. Fully developed dimensionless temperature profile for Case 2 thermal boundary condition. 

Table 1. Comparison of asymptotic Nusselt numbers in UWT and UHF 
boundary conditions 

Duct geometry 
Thermal boundary conditions 

UWT UHF 

Semi-circular Case 1 5.626t 6.724 [5] ; 6.692 [4] 
Case 2 4.6317 5.172 [5] 

Circular 3.657 [2] 4.364 [2] 

t Results from the present study. 

for the two boundary conditions are 

Case 1 : Nu = 5.626 
Case 2: Nu = 4.631. 

As would be expected from the larger heat transfer 
area of Case 1, this Nusselt number is higher than that 
for the Case 2 boundary condition. An interesting 
comparison of the heat transfer coefficients for the 
present UWT case with the asymptotic UHF results 
is presented in Table 1. The circular tube Nusselt 
numbers for the two thermal boundary conditions are 
also tabulated. The UWT results are evidently lower 
than the corresponding UHF Nusselt numbers. This, 
according to Shah and London [2], results from the 
smaller temperature gradient at the wall in the UWT 
case, due to the slight inflection in the temperature 
profile near the wall. Nevertheless, in either situation, 
the heat transfer coefficients for semi-circular tubes 
are seen to be greater than those for circular tubes. 

Thermal entrance region heat transfer 
The thermal entrance region solution considered 

here presupposes a fully developed velocity profile as 
presented in Fig. 3. For the Case 1 boundary 

condition, the numerical marching solution of the 
governing energy equation resulted in the temperature 
profiles (at 6 = 90’) shown in Fig. 6. The uniform 
temperature profile at the duct entrance grows to a 
‘parabolic’ profile as the fluid flows downstream and 
the thermal boundary layer attains the fully developed 
condition. A similar development of the temperature 
profiles (at 8 = 90’) in the entrance region for the 
Case 2 thermal boundary condition is presented in 
Fig. 7. The flat profiles at r = 0 are indicative of the 
adiabatic condition in the straight wall section of the 
semi-circular tube. As in the previous case, the tem- 
perature profile assumes a definite curvilinear shape 
further downstream in the flow field. 

Figure 8 shows the heat transfer results for Case 1, 
as characterized by mean axial Nusselt numbers, Nu,, 
at different Graetz numbers. The circumferentially 
averaged, but axially local, Nusselt numbers, Nu, and 
the bulk fluid temperatures, O,, are also plotted in 
Fig. 8. Similar results for the marching solution for 
the Case 2 thermal boundary condition are presented 
in Fig. 9. For design purposes, the results for Nu, are 
correlated as a function of Gz and are described by 
the following equations : 
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Z 

1. 1.56 x 1O-3 

2. 2.66 x 1O-3 

3. 1.04 x 1o-2 

4. 4.37 x 1o-2 

5. 3.24 x 10-l 

CASE 1; e = 90’ 

DIMENSIONLESS TEMPERATURE, $/$,, 

FIG. 6. Development of the temperature profile in the entrance region of the semi-circular duct with Case 
1 boundary condition. 

w 0.5- 
? 
z 
l/-l 
E 
ar 
z 1 

0.c I I I I 1 
0 1 

2 

1. 2.66 x 1O-3 

2. 1.04 x 10-2 

3. 4.37 x 1o-2 

CASE 2; 0 = 90° 

DIMENSIONLESS TEMPERATURE, t+$, 

FIG. 7. Development of the temperature profile in the entrance region of the semicircular duct with Case 
2 boundary condition. 

Case 1 A comparative presentation of the heat transfer 
Nu, = 5.626[1 +0.0533(G2)“~96’7”2~‘; (28) results of the two cases along with the UWT solution 

Case 2 for circular tubes [2] is given in Fig. 10. As would be 
Nu, = 4.631 [l +0.0954(Gz)“~86ss]“‘~9. (29) expected, the Nusselt numbers for the two cases seem 

close in the entrance region and diverge somewhere 
These equations predict the numerical data within downstream as the fully developed condition is 
f 2.5%. attained. The larger heat transfer area of the Case 1 



634 R. M. MANGLIK and A. E. BERGLSS 

loo 101 102 lo3 lo4 

GRAETZ NUMBER, Gr 

FIG. 8. Thermally developing fiow heat transfer results for semi-circular tubes with Case 1 boundary 
condition. 

GRAETZ NUMBER, Gt 

FIG. 9. Thermally developing flow heat transfer results for semi-circular tubes with Case 2 baundary 
condition. 

thermal boundary condition is reflected in higher heat CONCLUSIONS 
transfer coefficients in comparison with those for 
Case 2. Nonetheless, the Nusselt numbers for both A numerical solution for constant property, lami- 
cases are higher than the corresponding values for a nar flow in a semi-circular tube with UWT was carried 
circular tube. out. The semi-circular tube idealizes the geometry for 
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GRAETZ NUMBER, Gz 

FIG. 10. Heat transfer results in the thermal entrance region of semi-circular and circular tubes with UWT 
(see also equations (28) and (29)). 

an infinite twist ratio, zero thickness strip insert in a 
circular duct. Heat transfer in both the thermal 
entrance region and fully developed region was con- 
sidered. The flow was taken to be hydrodynamically 
fully developed. Two thermal boundary conditions, 
described by Case 1 and Case 2 and corresponding to 
the two extremes of the fin effect of the twisted tape, 
were chosen. The friction factor was determined to be 
(15.823/Re),,, which is in excellent agreement with 
the published analytical result [4]. The thermal 
entrance region heat transfer results for the Case 1 
and Case 2 boundary conditions are given and the 
asymptotic Nusselt numbers are 5.626 and 4.6341, 
respectively. The Nu, results for the two cases were 
also formulated into predictive equations as given by 
equations (28) and (29). 

These solutions define the limiting condition of the 
fin effect of a twisted-strip insert in a circular tube Ill]. 
The Case 2 solution of equation (29), in particular, 
provides the theoretical lower limit reference for the 
correlation of experimental data [Iv and the 
interpretation of the heat transfer enhancement 
phenomenon in circular tubes with twisted-strip 
inserts. 
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CONVECTION THERMIQUE LAMINAIRE DANS UN TUBE SEMI-CIRCULAIRE AVEC 
TEMPERATURE PARIETALE UNIFORME 

R&urn-n analyse la convection thermique laminaire dans un tube semi-circulaire avec paroi a tem- 
perature uniforme,les proprietes du fluideetantconstantes. Les resultats dtfinissent la limiteinfkieure de 
l'augmentation du transfert de chaleur dans les tubes circulaires avec des inserts a bandes vrillees. On 
considbre deux conditions aux limites thermiques correspondant a deux extremes pour l’effet d’ailette 
des inserts que l’on rencontre dans les applications pratiques. Des solutions numbriques employant les 
formulations de differences finies ont et& developpees. Pour un ecoulement hydrodynamiquement Ctabli, 
le coefficient de frottement bgal a (l5,823/Re),, s’accorde avec la solution analytique trouvee dans la 
bibliographie. Des risultats pour le transfer? thermique en zone d’btablissement sont present&s 
graphiquement et les equations (28) et (49) de&vent les solutions de NY, en fonction de Gz pour les 
deux conditions aux limites. Les nombres de Nusselt asymptotiques sont 5,626 et 4,631 pour les deux cas. 

WARMEUBERTRAGUNG IN LAMINARER STRGMUNG IN EINEM 
HALBKREISFGRMIGEN ROHR MIT EINHEITLICHER WANDTEMPERATUR 

Zusammenf aasnng-Der Wiirmeiibergang in laminarer Striimung in einem halbkreisformigen Rohr wurde 
fur einheitliche Wandtemperatur und konstante Stoffeigenschaften analysiert. Die Ergebnisse definieren 
die untere Grenze fur die Verbessenmg des Warmeilbergangs in kreisrunden Rohren mit Einbauten aus 
verdrillten Bandem. Dabei werden zwei thetmische Randbedingungen betrachtet, die den beiden Extremen 
des Rippeneffekts entsprechen, welchen man in der praktischen Anwendung begegnet. Es wurden numer- 
ische Liisungen mit Hilfe eines Finite-Differenzen-Verfahrens ermittelt. Fiir eine hydrodynamisch voll 
ausgebildete Stromung stimmt der Reibungsfaktor von (l5,823/Re),, mit der analytischen Lijsung aus der 
Literatur ilberein. Ergebnisse fiir die Wiirmeiibertragung in der therm&hen Einlaufstrecke sind gratisch 
dargestellt. Die Gleichungen (28) und (29) beschreiben die Nu-Zahl als Funktion der Gz-Zahl fiir die beiden 

Randbedingungen. Die asymptotischen Nusselt-Zahlen fur die beiden Fiille sind 5,626 bzw. 4,63 1. 

TEI-IJIOI-IEPEHOC I-IPM JIAMHHAPHOM TEgEHHH B IIOJIYKPYI-JIOB TPY6E C 
PABHOMEPHO HAI-PETOft CTEHKOB 

kOIoTaU5J-km.rni3HpyeTCK Terrnonepermc npn nak4miapnoM renenmr x~YHKKOCT~~ c nocroKHrrbrMH 

CBOiiCTBaMn B nOJtyKpyrnO& Tpy6e CpaBHOMepHO HarpeTOti CTeHKOfkPe3ynbTaTbl n03BOnRlOT OnfWle- 

JtUTb HHlYHHti npeZ@K HHTeHCHCjIEKalQiH TeI'LIrOO6MeHa B KpyrJrSrX rpy6ax CH3BH.ITHCTbIMH JteHTOYHbtMB 

BnaBKaMH.Pa~MO~HOnBaBHnaTe~OB~XTpaHHSHblXyCnOBHii,COOTBeT~BylomHXnByM BCTp'ratO- 

Mecca Ha npaxrwxe npenenbebrm cnynanM antrnmia pe6ep acraaox. IIonyvenbi nricnemibre pemerinn c 
HCnOJtb30BaHHeM KOHeYHO-pa3HoCTHblX I$OpblyJtHpOBOK. &HI riU&POJ.WRH~MH'ECKH nOJtHOCTbiO pa3BH- 

Tore TegeHHR K03@#WmeHT Tpe~~~,paBHblk (l5,823/Re)&, cornacyercn c H~B~~THMM 3HaqemreM,pacc- 

YHTaHHUM aWtHTHWCKH.kJynbTaTbr n0 TetTnOO6MeHy npu TepMUWCKH HeyCTaHOBHBmeMCK Te4eHHA 

npencrasneebI rpa@!uecxs. YpaeHemrn (28) H (29) naror pemerinn AJ~S 3aaircnMocrn %icna Nu, OT Gz 
LuIn nnyx rpaHHnHblX ycJtoa.riit. ACHMnTOTaWcKHe 3Ha'leHHn qHCJra HyCCeJIbTa arm ~THX nByx cnynaes 

paBHbt 5,626 H 4,631. 


